If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x+34=0
a = 4; b = 24; c = +34;
Δ = b2-4ac
Δ = 242-4·4·34
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{2}}{2*4}=\frac{-24-4\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{2}}{2*4}=\frac{-24+4\sqrt{2}}{8} $
| 5^2x+1=6.5^(x)-1 | | 9(t-3)+3t=6(2t+2)-10 | | 6y+2=3y | | -2x-10=x+14 | | 2^(x+1)=17.2^x-2 | | 2-2y+3(1)=7 | | 3x+12=6x+23 | | 6x+104=16x+-114 | | v²+30=-11v | | 25a²=9 | | 27100=12500(1+0,35)n | | 25a²=19 | | 3/8x+2=5/12-4x | | -6(1-8b=-246 | | 25a²+5=14 | | 8(t-4)+4t=4(3t+4)-12 | | 14x+5=69 | | 4(8^(8^x)=-11(8^4x)+20 | | 5+7x-4=9x+33-6x | | -2×+4z=2.16 | | x^2-60=6x | | 36/30=n/5 | | x-36=-23+47 | | 15x^2-x+84=0 | | 3(x-6)=6x+24. | | x/3+3/3=15/4 | | -2.3y=-0.7y+4.8 | | 2+19p-24=-22 | | t^2+13t+8=0 | | x-14=52-21 | | x^2-7.46x-45=0 | | x^2=7.46x-45=0 |